Country Profile

Guinea

Investing in Land Degradation Neutrality: Making the Case

An Overview of Indicators and Assessments
Contents

1. Quick Facts ... 3
2. Population on Degraded Land ... 4
 2.1 National Overview .. 4
 2.2 Regional and Global Overview ... 5
3. Economics of Land Degradation ... 6
 3.1 National Overview .. 6
 3.2 Regional and Global Overview ... 7
4. Land and Climate Change .. 8
 4.1 National Overview .. 8
 4.2 Regional and Global Overview ... 11
5. Opportunities - The Way Forward .. 12
6. Ongoing Projects and Programmes .. 14
7. Country Studies ... 15
8. Supplementary Information .. 16
 8.1 Glossary .. 16
 8.2 Notes ... 17
 8.3 References ... 18
 8.4 Photos .. 19
 8.5 About this Publication .. 19
1. Quick Facts

In Guinea, 1.6 million people were living on degrading agricultural land in 2010 – an increase of 25% in a decade, bringing the share of rural residents who inhabit degraded agricultural land up to 22% of the total rural population. Land degradation can severely influence populations’ livelihood by restricting people from vital ecosystem services (including food and water), increasing the risk of poverty.

During the same time period (2000-2010), the amount of people residing in remote degrading agricultural areas with limited market access increased by 25%, reaching 375 thousand people. Populations in remote areas have restricted options for managing land and accessing other benefits of economic development.

The annual cost of land degradation in Guinea is estimated at 512 million United States dollars (USD). This is equal to 12% of the country’s Gross Domestic Product. Land degradation leads to reduction in the provision of ecosystem services that takes different forms – deterioration in food availability, soil fertility, carbon sequestration capacity, wood production, groundwater recharge, etc. – with significant social and economic costs to the country.

The returns on taking action against land degradation are estimated at 4 USD for every dollar invested in restoring degraded land in Guinea. Assessments of the costs of action against land degradation through restoration and sustainable land management practices versus the cost of inaction highlight the strong economic incentive for bold actions against land degradation.

In Guinea, the Agriculture, Forestry and Other Land Use (AFOLU) sector is responsible for 78% of the total greenhouse gas emissions of the country. The removals of carbon emissions by forests are estimated at 2% of the total emissions of the country. Due to the role of terrestrial ecosystems as a source and sink of emissions land is positioned as a key point of intervention for climate change mitigation and adaptation as also reflected in Guinea’s Nationally Determined Contributions (NDC).

Land-based mitigation options rank among the most cost-effective opportunities to sequester carbon emissions. Economic evaluations of various climate change mitigation alternatives show that capturing carbon through restoring degraded lands (including degraded-forest) is a cost-effective option that offers multiple co-benefits.

Sustainable Development Goal 15, ‘Life on Land’, and its target 15.3 on Land Degradation Neutrality (LDN) is a unique opportunity for countries to curb the growing threats of land degradation and to reap multiple socioeconomic benefits of LDN. Guinea has already set national voluntary LDN targets, established an LDN baseline, and formulated associated measures to achieve LDN.
2. Population on Degrading Land

2.1 National Overview

Land is a source of well-being for present and future generations — it provides a wide range of ecosystem services that sustain human needs. Land degradation can severely influence livelihoods by limiting the availability of vital ecosystem services (including food and water), increasing the risk of poverty and ultimately forcing people to migrate.

A recent study shows that the state of the land, whether it is improving or degrading, can to a large extent influence the impact of the country’s economic growth on the alleviation of poverty, making land an accelerator (or decelerator) of poverty eradication.

Poverty in Guinea is estimated to affect 65% of the rural population. In 2010, 22% of the rural population of the country was living on degrading agricultural land, which amounts to approximately 1.6 million people! Moreover, between the years 2000 and 2010, the number of people living on degrading agricultural land grew by 324 thousand, representing an increase of 25% over the decade (see table 1 for further details).

By 2010, 375 thousand people or 5% of Guinea’s rural population resided in remote degrading agricultural areas without market access. This number increased by 25% between 2000 and 2010 (see table 1). Populations in remote areas have more limited options for managing land and accessing other benefits of economic development.

Improving land quality and living standards of the rural population requires policy responses that improve the condition of terrestrial ecosystems by avoiding, reducing and reversing degraded land. Investments, particularly in hotspot locations characterized by both high restoration potential and high socioeconomic benefits in poverty areas, will improve the conditions of the most vulnerable people and increase the resilience of ecosystems.

Table 1: Population on degrading agricultural land in Guinea

<table>
<thead>
<tr>
<th>Population categories</th>
<th>2000</th>
<th>2010</th>
<th>% change from 2000 to 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rural population on degrading agricultural land</td>
<td>1,272,791</td>
<td>1,596,725</td>
<td>25.5%</td>
</tr>
<tr>
<td>Share (%) of rural population on degrading agricultural land</td>
<td>21.0%</td>
<td>22.3%</td>
<td>*1.3%</td>
</tr>
<tr>
<td>Rural population on remote degrading agricultural land</td>
<td>299,141</td>
<td>374,751</td>
<td>25.3%</td>
</tr>
<tr>
<td>Share (%) of rural population on remote degrading agricultural land</td>
<td>4.9%</td>
<td>5.2%</td>
<td>*0.3%</td>
</tr>
<tr>
<td>Rural population</td>
<td>6,069,928</td>
<td>7,173,922</td>
<td>18.2%</td>
</tr>
<tr>
<td>Total population</td>
<td>8,799,165</td>
<td>11,012,406</td>
<td>25.2%</td>
</tr>
</tbody>
</table>

Note: Due to rounding, some figures in the text may not correspond with those reported in the tables or the sum of separate figures. * percentage-point difference between 2000-2010.
2.2 Regional and Global Overview

In Africa, 23% of the continent’s rural population resided on degrading agricultural land in 2010, equivalent to 184 million people. Moreover, 6% of the total rural population—or 47.6 million people—lived in remote degrading agricultural land with limited access to markets.

The changes in these indicators between the period 2000 and 2010 for the region depict increases of 35% and 38% for the case of population residing in degrading agricultural land and remote degrading agricultural land respectively, whereas the overall population in rural areas grew at 27% over the same period (see table 2).

On a global level, it is estimated that about 1.5 billion people worldwide—equivalent to 32% of the total rural population—resided on degrading agricultural land in 2010. Furthermore, during the same year, 233 million people lived on remote degrading agricultural land with limited access to markets, representing 5% of the global rural population.

Among the world’s regions suffering from land degradation, the most affected continent is Asia with 79% of the global rural population residing in degrading agricultural areas (or 1.1 billion people). The second most affected region is Africa, with a share of 12% in the global rural population living in degrading agricultural areas. The remaining 9% are spread across Europe (5%), Latin America and the Caribbean (3%), and Northern America and Oceania (1%).

Regarding changes over time for the period 2000-2010, the global rural population in degrading agricultural areas and remote degrading agricultural areas increased by 12% and 14%, respectively.

Table 2 contains additional details of the populations living in degrading agricultural areas and remote degrading agricultural areas by region and globally for the years 2000 and 2010, as well as the percentage changes during this decade.

<table>
<thead>
<tr>
<th>Regions</th>
<th>Population in 2010</th>
<th>% change from 2000 to 2010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural population</td>
<td>Rural population</td>
</tr>
<tr>
<td></td>
<td>(in millions)</td>
<td>on DAL (in millions)</td>
</tr>
<tr>
<td>Africa</td>
<td>812.6</td>
<td>184.0</td>
</tr>
<tr>
<td>Asia</td>
<td>3,102.9</td>
<td>1,176.8</td>
</tr>
<tr>
<td>Europe</td>
<td>310.1</td>
<td>75.6</td>
</tr>
<tr>
<td>Latin America and the Caribbean</td>
<td>350.9</td>
<td>48.2</td>
</tr>
<tr>
<td>Northern Africa</td>
<td>71.4</td>
<td>11.4</td>
</tr>
<tr>
<td>Oceania</td>
<td>16.0</td>
<td>0.9</td>
</tr>
<tr>
<td>World Total</td>
<td>4,663.9</td>
<td>1,496.9</td>
</tr>
</tbody>
</table>

Note: DAL= Degrading Agricultural Land
3. Economics of Land Degradation

3.1 National Overview

Land provides valuable ecosystem services for human well-being, but land degradation leads to a reduction in the provision of these services with significant social and economic costs to the country. The decline of ecosystem services can take different forms, including decline in food availability, soil fertility, carbon sequestration capacity, wood production, groundwater recharge, among others.\(^6\)\(^7\)\(^8\)

The costs of land degradation for the country are measured in terms of the changes in land productivity by considering two aspects changes in land cover from a high-value biome to a lower-value biome (e.g. forest land converted to cropland); and the decline in ecosystem services provision within a certain land cover type due to degrading land-use practices (e.g. reduced cropland productivity over time).\(^9\)

In Guinea, the total annual cost of land degradation is estimated at 512 million United States Dollars (USD) — this is equal to 12% of the country’s Gross Domestic Product (GDP).\(^10\) Moreover, a considerable share of the costs of land degradation (50%) is due to the decline in provisioning ecosystem services (e.g. food availability, wood production, etc.), which has a significant impact on the population of the country. The remaining share refers to the regulating ecosystem services (e.g. carbon sequestration, water regulation flows), which has an impact not only at the country level, but also on the regional and global scale due to the transboundary nature of these services that provide incentives for international cooperation (see table 3).\(^9\)

Land degradation often stems from land-use decision-making processes driven by high market prices of specific ecosystem services — for example, food. In this context, land-use decisions may largely neglect the significance of other ecosystem services for which no markets exist, but which are also of high value to the society.\(^9\)

Given the significant economic burden of land degradation, research has also focused on the study of the costs of action against land degradation through restoration and sustainable land management practices. These costs of action are often compared to the costs of inaction — the latter being derived from the projection of past degradation rates to the future.

In this context, a recent global assessment on land degradation\(^10\) shows that for Guinea the returns on taking action against land degradation versus inaction are estimated at 4 USD for every dollar invested in reverting degraded land,\(^9\) underlining the strong economic incentives for bold actions on achieving LDN.

| Table 3: Economics of land degradation (LD) in Guinea\(^6\)\(^6\)\(^8\) |
|---------------------------------|---|
| Total annual cost of land degradation (base year 2007) | 512 m USD |
| Cost of LD due to the decline in provisioning ecosystem services (as % of total cost) | 50% |
| Cost of land degradation as % of GDP | 12% |
| Cost of action (30-year planning horizon) | 5.6 bn |
| Cost of inaction (30-year planning horizon) | 22.7 bn |
| Returns on action against land degradation per dollar invested | 4 USD |
| GDP 2016 (US$) | 6.3 bn |
| Share of Agriculture in total GDP 2016 | 20% |
| GDP per capita 2016 (US$) | 508 |

Note: m = million; bn = billion
3.2 Regional and Global Overview

For Africa, the total annual costs of land degradation are estimated at 65 billion USD, which amounts to about 4% of the total GDP of the region. This share, however, varies considerably among countries.

On a global scale, the costs of land degradation are estimated at about 297 billion USD. As illustrated in Table 4, Asia accounts for the largest share of the total global cost of land degradation (28%), followed by Africa (22%), Latin America and the Caribbean (20%), Northern America (12%), Europe (12%) and Oceania (5%).

Assessments of the cost of action against land degradation versus the cost of inaction show that the latter significantly outweighs the former. On the regional level, the costs of action for Africa are estimated at 731 billion USD, whereas the costs of inaction equal about 3.1 trillion USD (see Table 4). The regional breakdown reveals social returns ranging from about 4 USD in the case of Asia, Africa, and Latin America and the Caribbean, and up to 6 USD in Europe, Northern America, and Oceania (see Table 4).

On a global level, estimates show costs of action in the amount of 4.6 trillion USD, whereas the costs of inaction equal about 23.2 trillion USD. That means that the expected social returns of taking action are estimated at about 5 USD for every dollar invested in the restoration of degraded land and sustainable land management.

Table 4: Cost of land degradation at regional and global scale

<table>
<thead>
<tr>
<th>Regions</th>
<th>Cost of Land Degradation (LD)</th>
<th>Cost of action and inaction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total annual cost of LD (in billion USD; year 2007)</td>
<td>% of the annual cost of LD in the world total</td>
</tr>
<tr>
<td>Africa</td>
<td>65</td>
<td>22.0</td>
</tr>
<tr>
<td>Asia</td>
<td>84</td>
<td>28.4</td>
</tr>
<tr>
<td>Europe</td>
<td>35</td>
<td>11.8</td>
</tr>
<tr>
<td>Latin America and the Caribbean</td>
<td>61</td>
<td>20.4</td>
</tr>
<tr>
<td>Northern America</td>
<td>36</td>
<td>12.2</td>
</tr>
<tr>
<td>Oceania</td>
<td>15</td>
<td>5.2</td>
</tr>
<tr>
<td>World Total</td>
<td>297</td>
<td>100.0</td>
</tr>
</tbody>
</table>
4. Land and Climate Change

Land plays an important role in the global carbon cycle because terrestrial ecosystems continuously exchange carbon fluxes with the atmosphere. The exchange is two-way: on the one hand, terrestrial ecosystems sequester carbon through natural processes, and on the other hand, they release carbon through respiration as well as anthropogenic activities related to agriculture, forestry, and other land use. The role of terrestrial ecosystems as a source and sink of emissions positions land as a key element of intervention for climate change mitigation and adaptation.

4.1 National Overview

Land as a Source of Emissions

The Agriculture, Forestry and Other Land Use (AFOLU) sector is an important source of Greenhouse Gases (GHG). Figures vary on how this sector contributes to the national emission inventories across countries. In Guinea, the AFOLU sector is responsible for 78% of the total emissions of the country (see table 5).

Within Guinea’s AFOLU sector, the larger share of the emissions is from Forestry and Other Land Use (FOLU) subsector (45%). Emissions from Agriculture plays a minor role.

Land as a Carbon Sink

Terrestrial ecosystems also play an important role as carbon sinks, offsetting emissions released by various sectors of the economy. The removals of carbon emissions through Forest are estimated at 0.8 million tonnes of CO₂ in 2010 for Guinea (see table 5). This is equal to 2% of the total emissions of the country. The potential carbon storage per hectare (ha) and year varies considerably depending on the type of biome, the practice on the ground, and the prevalent climate. The mean rate of sequestration is estimated at 1.5 tonnes of carbon (tC)/ha per year, where 0.5 tC is from soil organic carbon sequestration and an additional 1.0 tC from biomass.

In general, terrestrial ecosystems have a significant potential for carbon sequestration linked to the cumulative historic loss of carbon from land-use change. The capacity of land to further store carbon is crucial for bridging the time until new technologies to tackle climate change are adopted on a larger scale.

Table 5: Land as a source and sink of emissions in Guinea (year 2010)

<table>
<thead>
<tr>
<th>Sectors</th>
<th>GHG (Mt-CO₂e)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sources total</td>
<td>31.74</td>
<td>100.0</td>
</tr>
<tr>
<td>AFOLU sources</td>
<td>24.74</td>
<td>77.9</td>
</tr>
<tr>
<td>Agriculture</td>
<td>10.57</td>
<td>33.3</td>
</tr>
<tr>
<td>FOLU net sources</td>
<td>14.17</td>
<td>44.6</td>
</tr>
<tr>
<td>Other sectors</td>
<td>7.01</td>
<td>22.1</td>
</tr>
<tr>
<td>Forest net sink</td>
<td>-0.78</td>
<td></td>
</tr>
<tr>
<td>FOLU total</td>
<td>13.39</td>
<td></td>
</tr>
<tr>
<td>Total net emissions with FOLU</td>
<td>30.96</td>
<td></td>
</tr>
<tr>
<td>Total net emissions per capita with FOLU (in tonnes of CO₂e)</td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

Note: GHG=Greenhouse Gases; Mt-CO₂e = million tonnes of carbon dioxide equivalent
The UNCCD Science Policy Interface developed the Land Degradation Neutrality (LDN) conceptual framework\(^{(12)}\), which refers to three hierarchical policy responses to achieve LDN that go hand in hand with climate actions: i) **avoid** further land degradation by halting conversion of land types, for example, not converting forest land into agricultural land; ii) **reduce** the impact of land-intensive activities by using Sustainable Land Management (SLM) practices, so that less carbon is released from soil, crops and other biomass; and iii) **reverse** land degradation, for example, by restoring or rehabilitating land that has lost productivity.\(^{(12)}\)

Land as a cost-effective mitigation option

Within the various climate change mitigation alternatives, land-based mitigation options rank among the most cost-effective opportunities to sequester or avoid carbon.\(^{(13)}\) The cost of capturing one tonne of carbon (tC) by restoring degraded land is estimated at 51 USD per tC; while alternative engineering techniques such as ‘gas plant capture and carbon sequestration’ have a cost of 306 USD per tC (see table 6). Moreover, land-based mitigation options are estimated to be more cost-effective than other widely-used strategies to avoid emissions — for example, the substitution of fossil fuels by solar or wind energy.\(^{(13, 14)}\)

Moreover, it is worth noting that the option of storing carbon in terrestrial ecosystems by restoring land generates several other co-benefits that should also be factored in. They include for instance improving soil health, reducing food insecurity and enhancing water regulation flows.

Table 6: Cost of carbon sequestration using different techniques\(^{(13,14)}\)

<table>
<thead>
<tr>
<th>Technique/Strategy</th>
<th>Cost of abatement USD per tC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second-generation biofuels</td>
<td>25</td>
</tr>
<tr>
<td>Pastureland aorestation</td>
<td>51</td>
</tr>
<tr>
<td>Degraded-land restoration</td>
<td>51</td>
</tr>
<tr>
<td>Degraded forest restoration</td>
<td>61</td>
</tr>
<tr>
<td>Agriculture conversion</td>
<td>128</td>
</tr>
<tr>
<td>Biomass co-firing power plant</td>
<td>153</td>
</tr>
<tr>
<td>Coal-C capture and sequestration</td>
<td>229</td>
</tr>
<tr>
<td>Gas plant capture and sequestration</td>
<td>306</td>
</tr>
<tr>
<td>Solar VP</td>
<td>92</td>
</tr>
<tr>
<td>Wind(^*)</td>
<td>76</td>
</tr>
</tbody>
</table>

Note: tC = tonne of Carbon

Land matters play a key role in developing climate change mitigation and adaptation policies, Box 2 presents the leading land-based mitigation and adaptation strategies considered in Guinea’s Nationally Determined Contributions.
Box 2. Highlights on Climate Change and Land from Guinea’s Nationally Determined Contributions\(^{15}\)

Land-based mitigation plans

Reforestation: 10,000 ha reforestation per year; Sustainable management of replanted areas

Sustainable Forest Management: Manage forests sustainably; Limit wood-energy consumption

Biofuels – Renewable Energy: 30% of its energy (excluding wood-energy) from renewable energy sources

Climate Smart Agriculture: Measures to intensify rice production

Demand-Side Efficiency: Support the dissemination of technologies and practices that are energy efficient or use alternatives to wood-energy and charcoal (SE4ALL and Biodiversity Strategy)

Land-based adaptation priorities

Reforestation: Preserve and restore the riparian forests at the spring heads and along the banks

Crops: Develop rice production by growing salt tolerant rice variety; Agricultural product diversification; employing low-input variety and cropping techniques

Food Security: Develop techniques to preserve and process agricultural, forestry and fish-farming products; Develop hydro-agricultural schemes

Irrigation: Controlled irrigation

Livestock: Improve pastoralism management

Ecosystem and Biodiversity: Project to conserve the ecosystems of the Mano River Union and manage international water resources

Mangroves: Reduce mangrove degradation

Coastal Management: Enhance knowledge of coastal zone; Extend the pilot adaption initiatives (i.e. Increased Resilience and Adaptation to Adverse Impacts of Climate Change in Guinea’s Vulnerable Coastal Zones project)

Mitigation and adaptation policy frameworks: Improve the Mangrove Management and Development Plan (SDAM)
4.2 Regional and Global Overview

In Africa, 63% of the total emissions released were from the Agriculture, Forestry and Other Land Use (AFOLU) sector in the year 2010. This percentage represents 2,610 Mt-CO₂e out of the total 4,109 Mt-CO₂e emitted in the region (see table 7). In the AFOLU sector, the ‘Forestry and Other Land Use (FOLU)’ subsector accounts for 44% (or 1,816 Mt-CO₂e), while the ‘Agriculture’ subsector is responsible for 19% (or 794 Mt-CO₂e) of the total emissions from the region.

At a global level, it is estimated that the AFOLU sector is responsible for 23% of the GHG emissions, which is equal to 11,380 Mt-CO₂e (see table 7). Breaking down the AFOLU sector into ‘Agriculture’ and ‘FOLU’ shows that the majority of emissions come from the latter subsector with a total amount of 6,304 Mt-CO₂e; while Agriculture emitted 5,075 Mt-CO₂e.

Regarding the regional contributions to the global emissions of the AFOLU sector, greenhouse gas (GHG) inventories report that the Asia region is the leading contributor of global AFOLU emissions. Asia is responsible for 35% of global AFOLU emissions, followed by Latin America and Africa which are responsible for 24% and 23% of emissions respectively. Table 7 displays further details of the regional contributions of the AFOLU sector in relation to the total global emissions as well as the regional breakdown for the Agriculture and FOLU subsectors.

Evidence also shows that the global forest ecosystems alone removed 3,234 Mt-CO₂e from the atmosphere in the year 2010 (see table 7). More generally, out of the total global carbon emissions to the atmosphere by human activities, an estimated 42% are accumulated in the atmosphere; another 23% is sequestered by the oceans; and the remaining 34% is attributed to sequestration by terrestrial ecosystems, highlighting the essential role of land-based ecosystems to mitigate climate change.

<table>
<thead>
<tr>
<th>Regions</th>
<th>Sources total</th>
<th>AFOLU Net sources</th>
<th>Agriculture</th>
<th>FOLU net sources</th>
<th>Forest net sink</th>
<th>Total emissions per capita with FOLU Mt-CO₂e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mt-CO₂e</td>
<td>in %</td>
<td>Mt-CO₂e</td>
<td>in %</td>
<td>Mt-CO₂e</td>
<td>in %</td>
</tr>
<tr>
<td>Africa</td>
<td>4,109</td>
<td>8.3</td>
<td>2,610</td>
<td>22.9</td>
<td>794</td>
<td>15.7</td>
</tr>
<tr>
<td>Asia</td>
<td>23,421</td>
<td>47.5</td>
<td>3,974</td>
<td>34.9</td>
<td>2,252</td>
<td>44.6</td>
</tr>
<tr>
<td>Europe</td>
<td>8,268</td>
<td>16.8</td>
<td>875</td>
<td>7.7</td>
<td>567</td>
<td>11.2</td>
</tr>
<tr>
<td>Latin America and the Caribbean</td>
<td>4,838</td>
<td>9.8</td>
<td>2,724</td>
<td>23.9</td>
<td>896</td>
<td>17.7</td>
</tr>
<tr>
<td>Northern America</td>
<td>7,711</td>
<td>15.6</td>
<td>752</td>
<td>6.6</td>
<td>406</td>
<td>8.0</td>
</tr>
<tr>
<td>Oceania</td>
<td>1,001</td>
<td>2.0</td>
<td>445</td>
<td>3.9</td>
<td>150</td>
<td>3.0</td>
</tr>
<tr>
<td>World total</td>
<td>49,349</td>
<td>100</td>
<td>11,380</td>
<td>100</td>
<td>5,075</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: Mt-CO₂e = million tonnes of carbon dioxide equivalent; FOLU = Forestry and Other Land Use.
5. Opportunities – The Way Forward

The 2030 Agenda for Sustainable Development offers opportunities for countries to curb the growing threats of land degradation and to reap multiple socioeconomic benefits of LDN.

Sustainable Development Goal 15 ‘Life on Land’ and its target 15.3 on Land Degradation Neutrality (LDN) particularly encourage countries to ‘combat desertification, restore degraded land and soil, including land affected by desertification, drought and floods, and strive to achieve a land degradation-neutral world by 2030’.

In October 2015, UNCCD country Parties decided that striving to achieve SDG target 15.3 is a strong vehicle for driving the implementation of the Convention and requested the UNCCD secretariat and appropriate UNCCD bodies to take the initiative and invite other relevant agencies and stakeholders to cooperate on achieving SDG target 15.3 (decision 3/COP12).

To achieve SDG target 15.3, the following five elements have been identified:

1. **LDN targets**: setting targets and establishing the level of ambition;
2. **Leverage and impact**: catalyzing the multiple benefits that LDN provides from climate change mitigation and adaptation to poverty reduction;
3. **Partnerships and resource mobilization**: rationalizing engagement with partners, overcoming fragmentation and systematically tapping into increasing finance opportunities, including climate finance;
4. **Transformative action**: designing and implementing bold LDN transformative projects that deliver multiple benefits; and
5. **Monitoring and reporting**: tracking progress towards achieving the LDN targets.

As of April 2018, 116 countries have made the commitment to translate the global goal of achieving LDN by 2030 into national action by setting national voluntary targets with the support of the LDN Target Setting Programme (LDN TSP) – a programme established by the Global Mechanism in collaboration with the UNCCD secretariat and supported by various partners.

Guinea is among the countries that have set national voluntary LDN target (see box 2), established an LDN baseline, and formulated associated measures.

The LDN targets provide Guinea with a strong vehicle for fostering coherence of policies and actions by aligning the national LDN targets with measures from the Nationally Determined Contributions and other national commitments, such as the restoration of 2 million hectares of degraded land under the Bonn Challenge and AFR100 initiatives.

Investing in LDN also accelerates the advancement of other SDGs due to the close linkages between land and other goals and targets, such as: Goal 1 (No poverty), Goal 2 (Zero hunger), Goal 5 (Promote gender equality), Goal 6 (Clean water and sanitation), Goal 8 (Decent work and economic growth), and Goal 13 (Climate action).
Box 2. Guinea's National Voluntary LDN Targets\(^{(17)}\)

In the context of climate change and biodiversity loss, Guinea will strive to restore 375,000 ha, i.e. 55% of the total area of degraded lands, and limit to 1% (238,440 ha) the loss of non-degraded land relative to the 2000-2010 reference period with the aim of reaching Land Degradation Neutrality.

Guinea’s specific targets:

- Increase by 1.5% (150,000 ha) forest areas with reference to the 2010 baseline.
- Cut by half (324,700 ha) the amount of land showing negative productivity trends between 2000 and 2010.

It is useful to note that the proposed objective to increase forest areas by 150,000 ha is in line with the country's Intended Nationally Determined Contribution (INDC) under the Paris Agreement.

The identified potential hotspots, divided by region, include:

- Lower Guinea: mining zone, refugee zone, Koukoure watershed
- Central Guinea: Niger watershed, Senegal watershed and Gambia watershed
- Upper Guinea: mining zone, Niger watershed
- Forest Guinea: mining zone, forest reserves
6. Ongoing Projects and Programmes

To illustrate land-based approaches, the following section features some of the ongoing projects and programmes supported by national and international organizations.

Ecosystem-Based Adaptation Targeting Vulnerable Communities of the Upper Guinea Region. The goal of the project is to reduce the vulnerability of local communities in the Upper Niger River Basin to the additional risks posed by climate change and build their general resilience through an ecosystem-based approach that focuses on watersheds, land-use practices and adaptive capacity. Funding Source: Least Developed Countries Fund. Implementing Agency: United Nations Development Programme. GEF Project Grant/Co-financing Total: 8.00 million USD/114.18 million USD. Link: for further information click [here](#).

Strengthening Resilience of Farming Communities’ Livelihoods against Climate Changes in the Guinean Prefectures of Gaoual, Koundara and Mali. The project aims to strengthen adaptive capacities of vulnerable populations in the prefectures of Gaoual, Koundara and Mali to the additional risks posed by the increased intensity and frequency of drought. Funding Source: Least Developed Countries Fund. Implementing Agency: United Nations Development Programme. GEF Project Grant/Co-financing Total: 3.72 million USD/29.34 million USD. Link: for further information click [here](#).
7. Country Studies

For further reading, this section offers country studies that may be useful in making the case for investing in Land Degradation Neutrality.

Sustainable Forest Management in Guinea. — USGS. (2015).

Community-Based Land Management (Global Environment Facility Trust Fund Grant) Project. — The World Bank. (2006).

Local Knowledge and the Social Shaping of Soil Investments: Critical Perspectives on the Assessment of Soil Degradation in Africa. — Fairhead. et al. (2005).
8. Supplementary Information

8.1 Glossary

This subsection provides a brief description of the indicators presented above.

Annual cost of land degradation

The UNCCD defines land degradation as ‘any reduction or loss in the biological or economic productive capacity of the land resource base. It is generally caused by human activities, exacerbated by natural processes and often magnified by and closely intertwined with climate change and biodiversity loss.’ In the study featured here on the cost of land degradation, Nkonya and colleagues\(^{69}\) approach the study of land degradation by investigating declines in land productivity in the past due to: i) land cover changes from a high value-biome to a lower-value biome, such as the conversion from forest land into cropland; and ii) declines in the ecosystem services provision within a land cover type due to the use of degrading practices.

Cost of action

The costs of action are estimated by taking into account the following two cost categories: i) initial fixed investments and maintenance expenses that are related to the restoration of the high-value biome until it reaches biological maturity; ii) the inclusion of the opportunity cost given by the forgone benefits from the lower-value biome under replacement. The analysis of the cost is carried out over a planning period of 30 years.\(^{60}\)

Cost of inaction

Cost of inaction represents the ‘business as usual’ (BAU) scenario. In this case, future land degradation trends are assumed to continue along patterns similar to those of the past. The total costs of inaction are calculated by the sum of future annual costs of land degradation over a 30-year planning horizon - where land degradation is captured by land cover changes from a high-value biome to a lower-value biome.\(^{60}\)

Returns of action

Nkonya and colleagues\(^{60}\) measure the benefit of action as the difference between the cost of inaction minus the cost of action. When this difference is positive, then taking action is justified in economic terms. Moreover, the figures on returns on investment are calculated as the cost of inaction over the cost of action. For further methodological details on the annual cost of land degradation, cost action, inaction and returns on action, see Nkonya and colleagues\(^{60}\)

Population on degrading agricultural land

Estimates of the population in degrading agricultural areas are based on the work of Barbier and Hochard\(^{60}\) They identify agricultural degrading land by looking at the areas that experienced negative changes in net primary productivity, using the Normalized Difference Vegetation Index. Note that estimates are mainly constrained to populations residing on ‘agricultural land’ in this study; the consideration of other land cover types may therefore increase the magnitude of these figures. Regarding data on the spatial distribution of rural population, this study uses data published by the Global Rural-Urban Mapping of the Socioeconomic Data and Applications Center (SEDAC). In order to further identify population in remote areas, Barbier and Hochard\(^{60}\) use data from the Global Environment Monitoring Unit of the Joint Research Centre of the European Commission.

Rural poverty

The rural poverty headcount ratio is used to calculate rural poverty, i.e. the percentage of rural population living below the national poverty line. National poverty line is the benchmark for estimating poverty indicators that are consistent with the country’s specific economic and social circumstances and reflect local perceptions of the level and composition of consumption or income needed to be non-poor.\(^{60}\)
Sustainable Land Management

SLM is the use and management of land resources—soil, water, animals and plants—for the production of goods to meet changing human needs, while ensuring the long-term productive potential of these resources and the maintenance of environmental functions. Degradation of water, soil and vegetation as well as emissions contributing to climate change can be limited through SLM practices that simultaneously conserve natural resources and increase yields.

8.2 Notes

i. Figures on population on degrading agricultural land are calculated by using the shares of rural population on degrading agricultural land and remote degrading agricultural land estimated in the work of Barbier and Hochard,

ii. Population in remote degrading areas is identified in terms of market accessibility, where access to market is defined as less than five hours of travel to a market city with a population of 50,000 or more.

iii. Country grouping is based on geographic regions as defined by the United Nations Statistics Division (see: https://unstats.un.org/unsd/methodology/m49/)

iv. Estimates of the economic costs of land degradation illustrated in this country profile are based on the work of Nkonya and colleagues.

v. The relationship between food production (provisioning ecosystem service) and the supply of other ecosystem services often depicts important trade-offs.

vi. These figures correspond to a 30-year planning horizon in terms of quantification of costs and benefits.

vii. Global estimates of the costs of land degradation vary to a great extent depending on the study. A study led by the Economics of Land Degradation Initiative estimates the global costs of land degradation at 9.6 trillion USD. In this regard, the figures presented in the current publication are conservative.

viii. This is a global average coefficient used as a default in this publication, and it should be replaced with that of national level when available. Note also that one tonne of carbon (C) is approximately equivalent to 3.66 tonnes of carbon dioxide (CO2).

ix. This version of the country profile uses the ‘Global GHG Abatement Cost Curve’ as default information. National GHG Abatement Cost Curve should be used when available.

x. Although solar and wind power are not sequestration techniques, but rather technologies that avoid (or reduce) emissions from the source, figures still show how competitive is restoring degraded land in comparison with solar or wind abatement alternatives.

xi. Figures related to Greenhouse Gases in this subsection are retrieved from FAOSTAT.

xii. The information on projects and programmes presented in this section has been obtained from the websites of the following organizations: Climate Investment Funds, Food and Agriculture Organization of the United Nations, Global Environment Facility, Green Climate Fund, United Nations Development Programme, United Nations Environment Programme and the World Bank.
8.3 References

8.4 Photos

Cover “Green hills of the Fouta” by jbdodane is licensed under Creative Commons BY-NC 2.0
p.7 http://pexels.com
p.9 http://pexels.com
p.13 http://pexels.com
p.14 http://pexels.com
p.15 https://pixabay.com/
Back cover “Fouta Djalon hills” by jbdodane is licensed under Creative Commons BY-NC 2.0

8.5 About this Publication

This country profile is intended to provide a brief overview of recent studies, assessments and indicators that demonstrate multiple benefits of taking bold actions to achieve Land Degradation Neutrality.

Team

Lead author: Pablo Muñoz
Contributing authors: Mian Ali, Paul Radloff, Zuo Yao, and Andjela Ristic
Editor: Helga Karsten
Project Assistant: Tatiana Poppe
Design: Nina Louise d’Arco, Laurène Torterat and Henry King

Acknowledgments

We are most grateful for comments and suggestions received from the UNCCD National Focal Points and their technical advisers, as well as Jacob Hochard (East Carolina University), Alisher Mirzabaev (ZEF), Ephraim Nkonya (IPFRI), Francesco Tubiello (FAO), and colleagues from the UNCCD.

Disclaimer

This information product is a non-contractual document intended for users (Readers) in accordance with the relevant provisions of the United Nations relating to publications and disclaimers.

The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the government of Guinea (including its views and policies) or the United Nations Convention to Combat Desertification (UNCCD) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. This information product may contain statements, statistics and other information from various sources. The UNCCD does not represent or endorse the accuracy or reliability of any statement, statistics or other information provided by the authors and contributors contained in this information product.

The citation of specific publications or any other documents does not imply that these have been endorsed or recommended by the government of Guinea or UNCCD. Reliance upon such statements, statistics or other information shall also be at the Reader’s own risk. The UNCCD shall not be liable to any Reader or anyone else for any inaccuracy, error, omission, alteration or use of any content herein, or for its timeliness or completeness.

Recommended citation

Contact

Pablo Muñoz, Ph.D. - Programme Officer, Global Mechanism of the UNCCD.
E-mail: pmunoz@unccd.int