Policy-oriented recommendations resulting from evidence on the potential contribution of integrated land use planning and integrated landscape management to positive transformative change, achieving land degradation neutrality and addressing desertification/land degradation and drought issues, under objective 1 of the Science-Policy Interface work programme for the biennium 2020–2021

Report by the Executive Secretary

Summary

By its decision 18/COP.14, the Conference of the Parties (COP) requested the Science-Policy Interface (SPI), as objective 1 of its work programme for 2020–2021, to provide science-based evidence on the potential contribution of integrated land use planning (ILUP) and integrated landscape management (ILM) to positive transformative change, achieving land degradation neutrality (LDN) and addressing desertification/land degradation and drought (DLDD) issues.

In response to this request, the SPI (a) conducted a scientific assessment and produced a technical report providing science-based evidence of how, in the context of working to achieve or exceed LDN, ILUP and ILM can contribute to positive transformative change, including examples of cases where these approaches have been applied, (b) effectuated a demonstration, resulting from an open call, of how LDN can be incorporated into existing open-source land use planning and trade-off analysis tools, and (c) provided scientific assistance to the Global Mechanism to support decisions on the technical feasibility of LDN transformative initiatives.

This document presents the activities undertaken by the SPI on objective 1 as well as a summary of the key findings emerging from the technical report. The Committee on Science and Technology may wish to consider these findings for the development, as
appropriate, of recommendations to the COP.

Contents

I. Background .. 1–8 3
II. Evidence base and rationale .. 9–21 4
III. Conclusions and recommendations .. 22–47 6
 A. Conclusion 1 on the centrality of integrated land use planning 24–27 6
 B. Conclusion 2 on shared characteristics and principles 28–31 7
 C. Conclusion 3 on implementation .. 32–35 7
 D. Conclusion 4 on the gaps which must be addressed 36–38 8
 E. Conclusion 5 on future dynamics and transformative change 39–47 8

Annexes

I. Categorization table of tools and approaches .. 10
II. Figures developed from the evidence base ... 11
I. Background

1. By its decision 18/COP.14, the Conference of the Parties (COP) to the United Nations Convention to Combat Desertification (UNCCD) adopted the Science-Policy Interface (SPI) work programme for the biennium 2020–2021 (annex to decision 18/COP.14). Under objective 1 of its work programme for 2020–2021, the SPI was requested to provide science-based evidence on the potential contribution of integrated land use planning (ILUP) and integrated landscape management (ILM) to positive transformative change, achieving land degradation neutrality (LDN) and addressing desertification/land degradation and drought (DLDD) issues.

2. In response to this request, as defined in decision 23/COP.11 and decision 19/COP.12, the SPI produced a technical report synthesizing science-based evidence of how ILUP and ILM can potentially contribute to positive transformative change in the context of LDN.

3. Key inputs for the technical report were based on two targeted background reports produced by commissioned subject matter experts1 in collaboration with SPI members and observers serving in working groups. The commissioned experts worked with the SPI to integrate key elements of the background papers into the technical report.

4. The technical report was prepared in accordance with the rules and procedures established by the COP, by which any scientific output prepared under the supervision of the SPI should undergo an international, independent review process.

5. In keeping with decision 19/COP.12, as well as internal SPI procedures, the draft of the technical report was peer-reviewed by all SPI members, including all Committee on Science and Technology Bureau members and representatives from SPI observer organizations (156 review comments received). After addressing these comments, the next draft of the technical report underwent an independent scientific review which included domain-knowledge experts from each region, selected by the co-chairs of the SPI (337 review comments received). These comments were considered in shaping the final draft of the report, which was then reviewed by the Bureau of the COP. The co-lead authors of the technical report ensured that all peer review comments received appropriate consideration.

6. The final draft of the technical report, entitled The Contribution of Integrated Land Use Planning and Integrated Landscape Management to Implementing Land Degradation Neutrality: Entry Points and Support Tools, and an associated science-policy brief are in press at the time of this publication and will be made available to the public online in May 2022. The main scientific findings and conclusions emerging from this technical report are summarized in this document.

7. During the 2020–2021 biennium, in response to the second deliverable of the first objective of the SPI work programme (decision 18/COP.14), the SPI also oversaw a demonstration of how LDN can be incorporated into existing open-source land use planning and trade-off analysis tools through an international technology innovation competition organized under the umbrella of the Group on Earth Observations LDN Initiative.2 The competition aimed to inspire innovation as well as collective and coordinated action towards LDN, while fulfilling objective 1, deliverable 2 of the SPI work programme. A total of 23 proposals were received from competing teams, with participants from 36 different countries. The competition encouraged the active involvement of end-users in the co-design and development of the tools, serving as concrete use cases for how

1 With support from the secretariat to the United Nations Convention to Combat Desertification, the Science-Policy Interface (SPI) drafted concept notes, terms of reference and evaluation criteria for the selection of these subject matter experts. Following a public competitive tender, three experts were commissioned for the task of elaborating these domain-specific background reports under the guidance of the SPI.

2 More information on the Group on Earth Observations Land Degradation Neutrality Initiative partnership is provided in document ICCD/COP(15)/4.
LDN can be incorporated into ILUP tools used in practice. The winning prototype, called LUP4LDN (Land Use Planning for Land Degradation Neutrality),\(^3\) allows users to evaluate land use and land management transition scenarios, anticipate the impacts of land management decisions and analyse trade-offs, providing visual and quantitative representations of land degradation gains and losses. It directly facilitates participatory land use planning. At the time this document was written, it was expected that the full version of the tool would be officially launched in March 2022 after incorporating feedback from users in two pilot countries, Tunisia and Burkina Faso.

8. In response to the third deliverable of the first objective of SPI work programme (decision 18/COP.14), the SPI provided scientific assistance to the Global Mechanism to strengthen national-level coordination and cooperation based on, inter alia, ILUP and ILM to support decisions on the technical feasibility of LDN transformative initiatives. More information on relevant activities supported in this regard can be found in documents ICCD/CRIC(20)/5 and ICCD/CRIC(20)/7. The SPI also contributed scientifically to the secretariat and the Global Mechanism’s support for national efforts to build capacity for improved assessment and monitoring of (a) LDN; (b) multiple benefits; and (c) trade-offs to support ILUP, as requested in decision 16/COP.14, paragraph 11.

II. Evidence base and rationale

9. LDN is more than implementing measures to conserve, sustainable use or restore land. It requires ILUP\(^4\) and ILM\(^5\) to achieve no net loss of land-based natural capital, respecting the LDN response hierarchy of avoid, reduce, reverse land degradation. The SPI objective 1 technical report entitled, The Contribution of Integrated Land Use Planning and Integrated Landscape Management to Implementing Land Degradation Neutrality: Entry Points and Support Tools, explores the contribution of ILUP and ILM to LDN target setting and implementation, as well as a review of the potential adaptation of available ILUP-ILM tools to support the mainstreaming of LDN into land use planning systems.

3. <https://lup4ldn.scio.services/#/>

4. Integrated Land Use Planning (ILUP) is defined as land use planning that seeks to balance the economic, social and cultural opportunities provided by land with the need to maintain and enhance ecosystem services provided by the land-based natural capital. It also aims to blend or coordinate management strategies and implementation requirements across multiple sectors and jurisdictions. This definition is included in the scientific conceptual framework for land degradation neutrality endorsed by Parties in decision 18/COP.13 and is based on United Nations General Assembly Agenda 21 Chapter 10, Integrated Approach to the Planning and Management of Land Resources, published in 1992. The Science-Policy Interface technical report elaborates that ILUP is applied in practice to the assessing and allocating of land-based resources across a landscape, accounting for differing uses and demands from different users (Metternicht, 2017). It requires coordination of planning and management across sectors concerned with land resources and their use, within a spatial administrative or geographic unit (e.g. catchment, region, and/or country). Its purpose is to identify the combination of land uses that can meet stakeholders’ needs while safeguarding resources for the future. By examining all land uses in an integrated manner, land-use planning identifies the most efficient trade-offs between land-use options and links social and economic development with environmental protection and enhancement, thus helping to achieve sustainable land management (FAO, 2018). Integrated land use planning is an umbrella term that includes more specific approaches such as – but not limited to – territorial planning and spatial planning.

5. Integrated landscape management (ILM) refers to long-term collaboration among different groups of stakeholders to achieve the multiple objectives required from the landscape. Five key features – all of which facilitate participatory development processes – characterise ILM: (1) shared or agreed upon management objectives that encompass multiple landscape benefits; (2) field practices that are designed to contribute to multiple objectives; (3) management of ecological, social, and economic interactions for the realization of positive synergies, and the mitigation of negative trade-offs; (4) collaborative, community engaged planning, management, and monitoring processes; and (5) the re-configuration of markets and public policies to achieve diverse landscape objectives. Definition based on Scherr et al 2013.
10. The technical report is based on an extensive review and assessment of scientific and grey literature on ILUP and ILM, including a review of the characteristics of the wide range and diversity of planning systems across and within regions. Elements of planning systems were compiled from existing typologies and land use planning traditions.

11. Available typologies of land use planning systems are incomplete with respect to the variety of systems and mixes of systems currently existing globally. In addition, land use planning systems are not static but evolve over time. Therefore, rather than attempting to force each country into a box of a particular “type”, it is more important that countries are able to characterize their land use planning system based on a number of relevant key elements.

12. Transformative change can be operationalized by identifying entry points for LDN into the planning process of a country. It can be specified by considering the phases of the land use planning cycle of that country and mapping them to the respective elements of the LDN framework. The land use planning system of a country provides the immediate context in which LDN targets are set and implemented. It determines the suite of ILUP-ILM tools and approaches most suitable for the LDN target setting and implementation process. These relationships are illustrated in figure 1 of annex II to this document.

13. Recognizing the wide range and diversity of planning systems across and within regions, the SPI developed a common typology of characteristic elements of ILUP-ILM. This typology is provided in figure 2 of annex II to this document.

14. The SPI technical report also explores the complex and integrated nature of various DLDD issues with social, environmental and economic implications, and acknowledges the role of land use planning systems and traditions in shaping the contexts in which LDN is to be implemented. LDN provides a framework for capitalizing on ILUP-ILM to address DLDD in a way that can accelerate the achievement of all Sustainable Development Goals (SDGs). Making the neutrality mechanism for LDN operational requires integrated land use planning. Therefore, the SPI overlaid the LDN framework over five phases of the ILUP-ILM process and the elements captured in the typology to identify gaps and barriers as well as opportunities for effective integration. The typology is depicted in figure 2 and the phases in figure 3 of annex II to this document.

15. The ILUP-ILM continuum is a key vehicle for efficiently delivering on LDN targets. Planning for LDN should leverage existing land use planning processes as well as capitalize on synergies with the targets and commitments of other multi-lateral environmental agreements (namely the United Nations Framework Convention on Climate Change and the Convention on Biological Diversity) to enhance the achievement of LDN in synergy with other planning objectives and sustainability targets.

16. For the technical report, tools informing or assisting ILUP-ILM processes were identified, categorized, and evaluated for their suitability to support the integration of LDN into ILUP-ILM. The scope of the review was on open access tools specifically designed to help ILUP-ILM processes and equitable, participatory approaches that promote inclusion. This categorization of tools and approaches is provided in the table in annex I to this document.

17. Many approaches and tools are available to help embed LDN interventions within the ILUP/ILM cycle. However, many of them require expert and technical knowledge. Concerted efforts of scientists and land use planning experts are needed in implementing these as part of the land use planning process. Such collaboration enables the integration of scientific knowledge in the planning process.

6 Grey literature is materials and research produced by organizations outside of the traditional academic publishing and distribution channels, and includes reports, working papers, government documents, white papers and evaluations, etc.

7 The planning cycle has been broken into five generic stages of: (1) description and assessment, (2) visioning, (3) planning, (4) implementation, and (5) monitoring and evaluation.
18. Most tools have been applied with a focus on specifically supporting either ILUP-ILM processes or LDN interventions. More guidance on the integration of LDN into the ILUP-ILM cycle is needed to ensure land use planning can address DLDD, help ensure the achievement of LDN, and help exploit synergies and minimize trade-offs with other objectives of the Rio conventions or SDGs.

19. The implementation of LDN within land use planning processes requires support from a suite of tools that assist in different stages of the planning process. Therefore, rather than aiming at creating more single application tools, increased efforts are required to combine different tools in a logical sequence, as a function of the LDN targets and key components of countries’ planning systems. Existing ILUP-ILM tools could be improved to better answer the requirements and principles of LDN (e.g. indicators, response hierarchy, ‘like for like’, ‘one-out, all-out’), building on existing algorithms but implementing more flexibility of use and data input.

20. ILUP and ILM are critical mechanisms for implementing and achieving LDN as land use planning and landscape management provide a spatial-temporal platform to balance the multiple demands of society on space. Striving to achieve LDN requires a strategic and iterative approach, and planning and institutional support that goes beyond implementing individual sustainable land management practices, as the counterbalancing mechanism involves coordination across landscapes and sectors. This is illustrated in figure 4 in annex II to this document.

21. ILUP-ILM can help address current cross-cutting issues to which land health is central, including (a) how to build back better from the COVID-19 pandemic that has put the spotlight on the intricate interconnections between animal health, human health, ecosystem health, (b) sand and dust storm source mitigation, (c) the food, energy and nature trilemma, (d) strengthening urban-rural socio-ecological systems, and (e) increasing resilience to climate change and its effect on extreme weather events such as drought. This is illustrated in figure 5 in annex II to this document.

III. Conclusions and recommendations

22. The SPI technical report identifies and provides science-based evidence of how, in the context of working to achieve or exceed LDN, ILUP and ILM can contribute to positive transformative change, including examples of cases where these approaches have been applied. The SPI drew five conclusions from this evidence base.

23. The conclusions drawn are focused on aspects of these reports which can support the vision of the UNCCD 2018–2030 Strategic Framework: Build a future that avoids, minimizes, and reverses desertification/land degradation and mitigates the effects of drought in affected areas at all levels and strive to achieve a land degradation-neutral world consistent with the 2030 Agenda for Sustainable Development, within the scope of the Convention.8

A. Conclusion 1 on the centrality of integrated land use planning

24. ILUP and ILM have integral roles to play in achieving LDN and reducing decision uncertainties associated with planning for neutrality.

25. LDN requires thorough and spatially comprehensive planning for achieving no net loss of land-based natural capital, respecting the LDN response hierarchy of avoid, reduce, reverse land degradation. Planning is also needed to achieve LDN targets, and to avoid the unintended consequences of dealing with the food, energy and nature trilemma, or countries’ efforts towards building back better in the post-COVID-19 era.

26. Integrating LDN into existing national land use planning systems can help:
 (a) target LDN interventions and better account for changes in natural and social capital resulting from their implementation;
 (b) enable just solutions, increasing gender equity and avoiding social conflicts that may arise in the process of seeking optimal solutions that all actors are able to accept;
 (c) policy integration across multiple sectors to minimize trade-offs and concurrently achieve other commitments (e.g. the 2030 Sustainable Development Agenda, United Nations Framework Convention on Climate Change, Convention on Biological Diversity) and ambitions set by the United Nations Decade on Ecosystem Restoration;
 (d) gain insights into actions that can enhance multiple social and ecological benefits from planned LDN interventions while enhancing decision-making and efficiency; and
 (e) account for multi-stakeholders, diverse local knowledge and cross-sectoral views in the design of action plans (at local, watershed and national scales), following the response hierarchy of avoid > reduce > reverse land degradation, and cognizant of power dynamics and inclusion (gender, age).

27. The integration of LDN into ILUP-ILM processes is also a means to create synergies and policy coherence among the three Rio conventions, and to implement the strategies and goals of these conventions, and associated development targets.

B. Conclusion 2 on shared characteristics and principles

28. The integration of LDN into ILUP-ILM processes should consider the characteristics of the specific planning system of a country.

29. The LDN framework and the ILUP-ILM processes share common principles (e.g. science-based evidence, good governance, participatory processes, inclusiveness, gender considerations). Therefore, mapping the principles of the LDN framework into national principles of land use planning processes helps identify entry points for consideration of LDN as part of the planning system of that country. The categorization of tools is provided in annex I to this document.

30. Identifying typological elements of a national planning system (e.g. governance structure, land tenure, level of vertical and horizontal integration and coordination, level of stakeholder participation) and the ILUP-ILM approaches more suitable to support land use planning according to national circumstances, facilitates the effective implementation of the LDN framework, including interventions.

31. Where systematic land use planning is non-existent or not fully functional (existent on paper, but not practised and/or implemented actually), the systematic assessment of land and land use options required for LDN planning can function as a catalyst for enhancing and strengthening the planning system. It can also advance the country’s development goals as well as goals of other environmental agreements.

C. Conclusion 3 on implementation

32. Implementation of LDN within ILUP-ILM processes needs to rely on a combination of tools and approaches.

33. Although LDN is relatively new and thus not commonly implemented within ILUP and ILM processes, there are entry points that provide opportunities for effective integration. While ILUP-ILM processes are complex and multi-dimensional, using science-based ILUP-ILM tools and approaches can facilitate the planning process, helping to achieve well-informed, efficient outcomes. These tools (e.g. to optimize the spatial mix of land uses and participatory scenario analysis) can also be
used to assess potential co-benefits, and possible trade-offs, both central to the achievement of LDN and addressing DLDD.

34. No single perfect tool or approach exists that facilitates planning for, and implementation of, LDN interventions. The applicability and usefulness of ILUP-ILM approaches and tools depend on the political, cultural and socio-ecological context of application (e.g. governance, land tenure, human capacity). Therefore, selection should be guided by criteria including the land governance system, data availability, and financial and human resources levels. In many cases, a combination of tools and approaches may be necessary to conform to the guiding principles of LDN.

35. ILUP-ILM tools oriented towards participatory transformation and sustainability management facilitate participatory stakeholder processes, fostering transparency and structure in the decision-making process, enabling meaningful participation by both men and women, and helping motivate stakeholders to take responsibility for the execution of actions identified for addressing land degradation.

D. Conclusion 4 on the gaps which must be addressed

36. Tools suitable for simulating the LDN mechanism and the response hierarchy within land use planning processes are scarce.

37. Efficient and effective integration of LDN into ILUP-ILM requires optimizing land uses to achieve neutrality. ILUP-ILM tools and approaches can be employed to determine and compare net-loss for different scenarios but they do not currently optimize land use for neutrality. Existing ILUP-ILM tools and approaches could also be improved to better address the requirements and principles of LDN (e.g. indicators, response hierarchy, ‘like for like’, ‘one-out, all-out principle’).

38. Efforts to develop tools that can explicitly address land use planning for achieving neutrality need to continue, fostering initiatives for enhanced tools that can fully incorporate the LDN guiding principles.

E. Conclusion 5 on future dynamics and transformative change

39. ILUP-ILM that supports the achievement of LDN should consider future changes that result from dynamic political, socio-cultural, and environmental contexts.

40. Countries must ensure that land use planning fully accounts for uncertainties (including from a changing climate) and alternative scenarios in order to respond to today’s problems and prepare for future land degradation and desertification challenges.

41. Identifying entry points for implementing interventions towards no net loss of natural capital within the planning process of a country is an important step for accelerating positive transformative change in order to achieve LDN, address desertification and land degradation, and meet other sustainability targets.

42. Land use planning, and interventions for achieving LDN are underpinned by cyclical, iterative processes where monitoring enables learning for adaptive management. Learning from the concrete experiences of countries already integrating the planning and implementation of LDN interventions into a larger ILUP-ILM context is beneficial for other nations seeking to design projects with ‘no net loss’ in mind, and aligned with their land use planning systems.

43. ILUP-ILM processes and tools are levers that can help implement national targets for achieving LDN. However, gender-sensitive and more transformative societal change is also required to address the drivers of increasingly competing demands for limited land resources.

44. Irrespective of the ambition and scale of LDN and other national targets to address DLDD, land-based interventions are best implemented through ILUP-ILM
schemes that are appropriate to the (sub)national context, using effective tools, platforms and available data sources.

45. To transform the ambition of LDN – and other global targets dependent on appropriate ILUP-ILM – into suitable actions, greater access to relevant data and the most appropriate analysis tools at national and sub-national ILUP-ILM scale of processes is necessary to navigate trade-offs and identify optimal locations for land-based interventions. In doing so, development partners, the private sector and governmental agencies involved in the phases that follow LDN target setting are empowered to advance towards the achievement of LDN, which is integral to SDG 15.3.

46. Movement towards LDN interventions embedded into ILUP and landscape management is itself a transformative change; it requires a change from a sectoral approach to the joint intersectoral consideration of societal objectives with a long-term vision. Therefore, it requires focused policies, investment and capacity development in the policy, academic/research and land use planning communities.

47. Parties may wish to consider these conclusions resulting from the SPI’s technical report, entitled The Contribution of Integrated Land Use Planning and Integrated Landscape Management to Implementing Land Degradation Neutrality: Entry Points and Support Tools, when engaging in consultations on a draft decision for the COP based on the draft text for negotiations that can be found in ICCD/COP(15)/CST/8, which, following decision 32/COP.14, contains all draft decisions prepared for Parties for consideration at the fifteenth session of the Committee on Science and Technology.
Annex I

Categorization table of tools and approaches

Table

Synthesis of tool groups, their main characteristics, and phases of the integrated land use planning–integrated land management cycle they can support*

<table>
<thead>
<tr>
<th>Tool group</th>
<th>Characteristics</th>
<th>Potential application</th>
<th>Integrated land use planning–integrated land management phase it can inform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicator-assessment tools</td>
<td>Calculate the selected indicator based on (spatial) dataset(s) on biophysical (e.g. soil organic carbon content and trends, land degradation status) or socio-economic properties (e.g. land tenure, census data on land owners and users) Analysis of current condition and/or historical trends</td>
<td>Risk and vulnerability analysis, ecosystem service and quality of life assessments</td>
<td>Assessment • Monitoring</td>
</tr>
</tbody>
</table>
| Forward-looking tools | • Extrapolate or forecast future development of land uses and/or land properties
• Often used to compare different scenarios and desired pathways and to identify drivers of development | Land use change modelling, socio-economic impact analysis, urban growth modelling, crop yield forecasting | Visioning • Planning |
| Multi-criteria-analysis tools | • Search for the best solution for complex problems with competing objectives and interests
• Priorities of different stakeholders are represented using different weights for criteria, options and alternatives
• Alternatives and their consequences are evaluated and ranked to select the most desirable alternative
• Either the best option for a location, or the best locations for an option are defined, but multiple objectives at a landscape level are not addressed | Urban planning, locational analyses, policy implementation analysis | Visioning • Planning • Implementation |
| Optimization tools | • Similarly to multi-criteria-analysis, these tools address complex problems with competing objectives of different actors
• Instead of location-specific analysis, landscape-wide mathematical optimization is conducted
• Alternatives are usually indefinite and the solution with the smallest distance to an optimal situation is aimed for
• Aim to find (spatial) solutions with the fewest trade-offs or costs at regional/landscape level | Land allocation planning, trade-off assessments | Planning • Visioning |
| Rapid-appraisal tools | • Gather information through consulting and working together with local actors/communities
• Strong focus on socio-economic conditions and how local people perceive their environment, including land condition and uses | Land tenure, land condition and impact assessments | Assessment • Monitoring |
| Process-oriented tools | • Facilitate negotiation, interaction and decision-making for policy implementation
• Particularly useful for mainstreaming and negotiating topics that often remain at the periphery of planning, including land rights and arrangements related to gender, indigenous people and communities
• Local actors decide together which activities are pursued to achieve a desired outcome | Stakeholder negotiations for local empowerment | Planning • Implementation |

The review and evaluation are representative, rather than comprehensive, of the tools that belong to the categories defined.
Annex II

Figures developed from the evidence base

1. The land use planning system of a country (right) provides the immediate context in which land degradation neutrality (LDN) targets are set and implemented (left). It determines the suite of integrated land use planning (ILUP) and integrated landscape management (ILM) tools and approaches most suitable for the LDN target setting and implementation process. Specific LDN tools and approaches can also be employed outside of the land use planning system (centre), however without the benefit of capitalizing on synergies with other planning processes. (see figure 1)

Figure 1
Entry points for the land degradation neutrality target within the land use planning processes of country.

LDN: land degradation neutrality / ILUP: integrated land use planning / ILM: integrated landscape management
2. In this typology of land use planning and integrated landscape management elements (figure 2), the value (or type, strength, quantity) of each element can assist project developers in identifying entry points in the planning system for the coherent design and implementation of LDN interventions.

Figure 2
A typology of the nine elements of land use planning and integrated landscape management
3. While the general ILUP-ILM process is cyclical, feedback and learning happen in every phase. The outer circle represents the modules of the LDN implementation framework, with arrows pointing to entry points into the phases of the ILUP-ILM cycle. (see figure 3)

Figure 3
The five phases of integrated land use planning and integrated land management implementation cycle overlaid by the modules of the land degradation neutrality framework

LDN: land degradation neutrality / ILUP: integrated land use planning / ILM: integrated land management
4. ILUP to achieve LDN is land use planning that seeks to balance, across multiple sectors and jurisdictions, the economic, social and cultural opportunities provided by land with the need to maintain and enhance ecosystem services provided by the land-based natural capital. (see figure 4)

Figure 4
Integrating the principles of land degradation neutrality with the principles of integrated land use planning and integrated land management

LDN: land degradation neutrality
5. Figure 5 is a schematic on how ILUP and ILM affect current cross-cutting issues where land health is central, through land restoration and rehabilitation or by avoiding or reducing land degradation. Each theme represents a complex socio-ecological issue in itself, and the themes are interrelated or interconnected. Tackling one problem can in tandem address others. In that sense, ILUP-ILM enables policy integration across multiple sectors and commitments.

Figure 5
How integrated land use planning and integrated land management affect current cross-cutting issues where land health is central